

30-31 gennaio 2024 BOLOGNA, Royal Hotel Carlton

Disclosures of Name Surname

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
GSK						x	
Janssen						x	
Menarini Stemline						x	
Amgen						x	
Sanofi						x	
Oncopeptides						x	

The purposefully designed CELMoD program

*Discovery that immunomodulators are dependent on cereblon to degrade target proteins (ie, Ikaros/Aiolos)

References: 1. Singhal S et al. *N Engl J Med.* 1999;341(21):1565-71. 2. VanRhee F et al. *Blood.* 2008;112;(4):1035-1038. 3. Chen C et al. *Br J Haematol.* 2009;146(2):164-170. 4. San Miguel SJ et al. *Lancet Oncol.* 2013;14(11):1055-1066. 5. Kronke J et al. *Science.* 2014;343(6168):301-305. 6. Lu G et al. *Science.* 2014;343(6168):305-309. 7. Lonial et al. Presented at the 61st Annual Meeting of the American Society of Hematology (ASH); December 7-10, 2019; Orlando, FL. Abstract 3119. 8. Richardson PG et al. Presented at the American Society of Clinical Oncology (ASCO) Annual Meeting; May 29-31, 2020; Virtual Program.

Novel CELMoD agents co-opt cereblon with unique binding features and induce distinct conformational changes

Classic IMiD agents exist as a mixture of S and R isomers, of which the R isomer is known to bind less efficiently to cereblon 1,2

 Novel CELMoD agents IBER and MEZI are uniquely administered as a single S isomer and bind to cereblon with greater potency

Compound	CRBN Binding Affinity (IC ₅₀)
Lenalidomide	~1.5uM
Pomalidomide	~1.2uM
Iberdomide	~0.06uM
Mezigdomide	~0.03uM

However, binding affinity is only part of the story

	LEN	POM	IBER	MEZI
Percent Closed	25%	20%	50%	100%

The ability to bind to cereblon and induce a closed conformation leads to substrate degradation and downstream anti-MM effects

"Active" Conformation³

Unique biochemical features of novel CELMoDs offer enhanced activity over classic IMiD agents and a differentiated profile

Faster substrate degradation results in increased direct anti-tumor activity, yet may not correlate with increased immune activation

References: 1. Hansen JD, et al. J Med Chem. 2020 Jul 9;63(13):6648-6676. 2. Matyskiela M, et al. J Med Chem. 2018;61(2):535-542. 3. Richardson PG et al. Presented at the ASCO Annual Meeting; May 29–31, 2020; Virtual Program. 4. Lopez-Girona A., et al. Blood. 2019;134(suppl 1):1812.

CELMoDs at IMS 20th

Iberdomide	Mezigdomide
1 Oral	1 Oral
7 Posters	3 Posters

Iberdomide, bortezomib, and dexamethasone (IberVd) in transplant-ineligible newly diagnosed multiple myeloma: results from the CC-220-MM-001 trial

Darrell White,¹ Brea Lipe,² Mercedes Gironella Mesa,³ Ruben Niesvizky,⁴ Albert Oriol,⁵ Anna Sureda Balari,⁶ Manisha Bhutani,⁷ Cristina Encinas,⁸ Abdullah M. Khan,⁹ Michael Amatangelo,¹⁰ Kexin Jin,¹⁰ Thomas Solomon,¹⁰ Kevin Hong,¹⁰ Alpesh Amin,¹⁰ Paulo Maciag,¹⁰ Niels W.C.J. van de Donk,¹¹ Sagar Lonial¹²

Iberdomide plus dexamethasone in patients with relapsed/refractory multiple myeloma: a safety analysis from the CC-220-MM-001 trial

Niels W.C.J. van de Donk,¹ Darrell White,² Brea Lipe,³ Abdullah M. Khan,⁴ Ruben Niesvizky,⁵ Albert Oriol,⁶ Mercedes Gironella Mesa,⁷ Faiz Anwer,⁸ Manisha Bhutani,⁹ Brian McClune,¹⁰ Seema Singhal,¹¹ Yiming Cheng,¹² Izumi Hamada,¹² Kexin Jin,¹² Thomas Solomon,¹² Kevin Hong,¹² Alpesh Amin,¹² Paulo Maciag,¹² Sagar Lonial¹³ Mezigdomide plus dexamethasone and bortezomib or carfilzomib in patients with relapsed/refractory multiple myeloma: results from the CC-92480-MM-002 trial

Albert Oriol,¹ Irwindeep Sandhu,² Marc S. Raab,³ Darrell White,⁴ Richard LeBlanc,⁵ Noopur Raje,⁶ Enrique M. Ocio,⁷ Aurore Perrot,⁸ Thierry Facon,⁹ Cesar Rodriguez,¹⁰ Ralph Waesch,¹¹ Michael Amatangelo,¹² Zehua Zhou,¹² Yue Wang,¹² Tiziana Civardi,¹³ Phillip Koo,¹² Paulo Maciag,¹² Yue Zhu,¹² Jessica Katz,¹² Paul G. Richardson¹⁴

Mezigdomide monotherapy in relapsed/refractory multiple myeloma: results from the CC-92480-MM-001 trial

Scott R. Goldsmith,¹ Albert Oriol,² Pekka Anttila,³ Nizar J. Bahlis,⁴ Jesús G. Berdeja,⁵ Andrew J. Cowan,⁶ Meletios A. Dimopoulos,⁷ Laahn H. Foster,⁸ Jens Hillengas,⁹ Martha L. Louzada,¹⁰ Ka Lung Wu,¹¹ Tracy T. Chow,¹² Wencong Chen,¹² Yue Wang,¹² Alessia Spirli,¹³ Phillip Koo,¹² Paulo Maciag,¹² Yue Zhu,¹² Jessica Katz,¹² Paul G. Richardson¹⁴

Emerging data suggest an interesting clinical profile for IBER

Iberdomide

Properties enable **combinability, enhanced anti-MM activity,** and **favorable tolerability** needed to achieve long-term disease control^{1,2}

Unique **immune-stimulation profile** (T and NK cells) and potential for no dose modifications in RI^{3,4}

Clinical insights on IBER

- Activity and tolerability with IBER+DEX, +Vd, +Kd, and +Dd regimens suggest a high potential for combinability^{1,2}
- Consistent safety profile and no dose adjustments anticipated for patients with mild-to-moderate renal impairment³
- Multiple dose strengths, and a unique T and NK cell signal, without reaching the MTD⁴
- Activity as IBER monotherapy being evaluated as maintenance post-ASCT^{5,6}
- Data at ASH 2022 demonstrate continued clinical activity in patients with prior BCMA therapy⁷
- Ongoing research program evaluating IBER as monotherapy and in combination for HRSMM, NDMM, maintenance, and RRMM^{5,6,8-10}

D=Darzalex (daratumumab); d=dexamethasone; DARA=Darzalex (daratumumab); IBER=iberdomide; LEN=REVLIMID (lenalidomide); MEZI=mezigdomide; MTD=maximum tolerated dose; POM=POMALYST/IMNOVID (pomalidomide); RI=renal impairment.

References: 1. Lonial S et al. Lancet Haematol. 2022; 52352-3026(22)00290-3. 2. Lonial S et al. Oral presentation at the EHA Virtual Meeting; June 9-17, 2021. Abstract 5187. 3, van de Donk NWCJ et al. Presented at the IMS Annual Meeting; August 25-27, 2022; Los Angeles, CA, USA. 4. Amatangelo M et al. Presented at the IMS Annual Meeting; August 21, 2023. https://www.clinicalTrials.gov/study/NCT04564703. 0 Lotata August 18, 2022, Accessed June 7, 2023. Accessed June 21, 2023. https://www.clinicaltrials.gov/study/NCT04564703. 6. ClinicalTrials.gov/study/NCT04564703. 6. ClinicalTrials.gov/study/NCT0476395. Updated June 7, 2023. https://www.clinicaltrials.gov/study/NCT0476395. 9. ClinicalTrials.gov/study/NCT0476395. Updated September 28, 2022. Accessed June 21, 2023. https://www.clinicaltrials.gov/study/NCT04975997. Updated June 2, 2023. Accessed June 21, 2023. https://www.clinicaltrials.gov/study/NCT04975997. Updated June 2, 2023. Accessed June 21, 2023. https://www.clinicaltrials.gov/study/NCT04975997. Updated June 2, 2023. Accessed June 21, 2023. https://www.clinicaltrials.gov/study/NCT04975997. Updated June 2, 2023. Accessed June 21, 2023. https://www.clinicaltrials.gov/study/NCT04975997. Updated June 2, 2023. Accessed June 21, 2023. https://www.clinicaltrials.gov/study/NCT04975997. Updated June 2, 2023. Accessed June 21, 2023. https://www.clinicaltrials.gov/study/NCT04975997. Updated June 2, 2023. Accessed June 21, 2023. https://www.clinicaltrials.gov/study/NCT04975997. Updated June 2, 2023. https://www.clinicaltrials.gov/study/NCT04975997. Updated June 2, 2023. https://www.clinicaltrials.gov/study/NCT049759

CC-220-MM-001 study design and objective

- Phase 1/2 trial evaluating IBER with different treatment combinations in MM^{1,2}
- **Objective**: to report the first results from the dose-expansion cohort of the CC-220-MM-001 trial evaluating IberVd in patients with NDMM who are TNE or not receiving ASCT as their first therapy

^aCohorts C (IBER monotherapy expansion) and J2 (IBER + BORT + DEX in patients with NDMM who are TE) were planned but not opened; ^b1.6 mg on D1–21 of 28-day cycles. ASCT, autologous stem cell transplant; BCMA, B-cell maturation antigen; CFZ, carfilzomib; D, day; TE, transplant eligible; TNE, transplant ineligible. 1. ClinicalTrials.gov: NCT02773030; 2. EudraCT number: 2016-000860-40.

CC-220-MM-001 eligibility, treatments, and endpoints

Key eligibility criteria

Treatments

Endpoints

- NDMM
- Previously untreated symptomatic MM^a
- No ASCT planned for initial therapy or ASCTineligible^b
- Measurable disease

IBER + BORT + DEX

IBER (oral): 1.0, 1.3, or 1.6 mg on D1–14 in C1-8, and D1-21 in C≥9

BORT (SC): starting at 1.3 mg/m² on D1, 4, 8, and 11 in C1-8

DEX (oral): 20 mg^c on D1, 2, 4, 5, 8, 9, 11, and 12 in C1-8, and 40 mg^d weekly in $C \ge 9$

21-day cycles (C1-8) 28-day cycles (C≥9)

- Primary: efficacy and safety
- Secondary: additional efficacy parameters (including DOR and PFS)
- Exploratory: Pharmacodynamics assessment, MRD evaluation

^aRadiotherapy, bisphosphonates, or a single short course of steroids were permitted; ^bPatients ineligible for ASCT due to age (≥ 65 years of age) or severe comorbidities; ^cDEX was given at a dose of 10 mg in patients > 75 years of age; ^dDEX was given at a dose of 20 mg in patients > 75 years of age.

C, cycle; DOR, duration of response; MRD, minimal residual disease; PD, progressive disease; PFS, progression-free survival; SC, subcutaneous.

Baseline characteristics

Characteristic ^a	lberVd TNE NDMM (N = 18)
Age, median (range), years	77.5 (57–84)
Sex, n (%)	
Male	12 (66.7)
Race, n (%)	
White	17 (94.4)
Not collected or reported	1 (5.6)
Time since diagnosis, median (range), years	0.1 (0.0–0.4)
ECOG PS, n (%)	
0	3 (16.7)
1	11 (61.1)
2	4 (22.2)
ISS stage at study entry, n (%)	
1	7 (38.9)
11	9 (50.0)
III	2 (11.1)
High-risk cytogenetics, ^b n (%)	11 (61.1) ^c

At follow up 14 months, only 1 patient discontinued treatment due to an AE of peripheral neuropathy

^aData cutoff: June 23, 2023; ^bDefined as the presence of any abnormality for del(17p), and/or translocation t(4,14), and/or translocation t(14,16), and/or amplification 1q21; ^c2/18 patients were not evaluable. ECOG PS, Eastern Cooperative Oncology Group performance status; ISS, International Staging System.

TEAEs

Most common (≥ 25% all grade) TEAEs and events of interest. ^a n (%)	lberVd TNE NDMM (N = 17) ^b			
	All grade	Grade 3	Grade 4	
Hematologic TEAEs				
Neutropenia	6 (35.3)	2 (11.8)	2 (11.8)	
Thrombocytopenia	5 (29.4)	1 (5.9)	1 (5.9)	
Anemia	4 (23.5)	1 (5.9)	0	
Lymphopenia	4 (23.5)	0	0	
Non-hematologic TEAEs				
Peripheral edema	11 (64.7)	1 (5.9)	0	
Peripheral sensory neuropathy	11 (64.7)	1 (5.9)	0	
Constipation	10 (58.8)	1 (5.9)	0	
Insomnia	8 (47.1)	1 (5.9)	0	
Fatigue	7 (41.2)	2 (11.8)	0	
Pain in extremity	6 (35.3)	0	0	
Dyspnea	6 (35.3)	0	0	
Decreased appetite	6 (35.3)	0	0	
Agitation	5 (29.4)	0	0	
Dysgeusia	5 (29.4)	0	0	
Infections	13 (76.5)	5 (29.4)	1 (5.9)	
COVID-19	5 (29.4)	1 (5.9)	0	
Pneumonia	3 (17.6)	2 (11.8)	1 (5.9)	

^aData cutoff: June 23, 2023; ^b1 patient was enrolled but not included in the safety population due to self-withdrawal (appointment absence). COVID-19, coronavirus disease 2019.

ORR was 100% in the efficacy-evaluable population

^aORR (PR or better); ^bData cutoff: June 23, 2023; ^cEfficacy-evaluable population; ^dAt a threshold of 10⁻⁵; ^eBORT was administered during C1–8 only; ^fFrom univariate analysis for all responders without adjusting for censoring. CR, complete response; MR, minimal response; ORR, overall response rate; PR, partial response; sCR, stringent complete response; SD, stable disease; VGPR, very good partial response.

Pharmacodynamics

stimulation (177% median increase in T-cell proliferation) when combined with Vd

Act, activated; BM, bone marrow; HLA-DR, human leukocyte antigen – DR isotype; PB, peripheral blood; Prolif, proliferating.

Conclusions

- In this cohort of mostly older patients with TNE NDMM, IberVd showed high efficacy with deep, ongoing responses
 - The ORR in the efficacy-evaluable population was 100%, with 87.5% of patients achieving VGPR or better, and 56.25% of patients achieving CR or better
 - Among patients who achieved \geq VGPR, 6/14 (43%) patients were MRD-negative at 10⁻⁵
 - 68.8% of patients responded in < 6 weeks</p>
 - At data cutoff, no events of documented PD or death were reported
- The safety profile was manageable with no new safety signals
 - Most grade 3/4 TEAEs were hematologic and the occurrence of other grade 3/4 non-hematologic TEAEs was low
 - Only 1 patient discontinued treatment due to an AE of peripheral neuropathy
- IBER induced robust Aiolos degradation and immune stimulation in combination with Vd
- These data support further assessment of IBER combinations in the frontline setting

except during the cycle 1 DLT evaluation period for Cohort B; ^f20 mg if > 75 years of age.

2 dose; TE, transplant eligible; TNE, transplant non-eligible.

CC -220 MM- 001 trial

Obiective To assess the kinetics of the most common TEAEs and impact on clinical outcomes (using ER analyses) in patients with RRMM treated with IBER + DEX in Cohorts B and D of the CC-220-MM-001

EudraCT: 2016-000860-40

^aCohorts C (IBER monotherapy expansion) and J2 (IBER + BORT + DEX in patients with NDMM TE) were planned but not opened: ^b1.6 mg on days 1-21 of 28-day cycles: cIncluding LEN, POM, a PI, and a glucocorticoid; dIncluding LEN, POM, a PI, a glucocorticoid, and a CD38 mAb; Prophylactic use of G-CSF and/or epoetin was permitted,

BCMA, B-cell maturation antigen; CFZ, carfilzomib; DLT, dose-limiting toxicity; G-CSF, granulocyte colony-stimulating factor; LEN, lenalidomide; mAb, monoclonal antibody; MTD, maximum tolerated dose; NDMM, newly diagnosed MM; PD, progressive disease; PI, proteasome inhibitor; POM, pomalidomide; RP2D, recommended phase

van de Donk N et al IMW 2023 poster P-320

В

Α

RRMM

30-31 gennaio 2024 BOLOGNA, Royal Hotel Carlton

CC -220 MM- 001 trial

Patients

- As of June 2, 2021, 197 patients had received IBER + DEX (90 in Cohort B, 107 in Cohort D)
- Cohort D was particularly heavily pretreated, with 97.2% being triple-class refractory

Safety

- Grade 3/4 TEAEs occurred in 75 (83.3%) patients in Cohort B, and 88 (82.2%) patients in Cohort D
- AEs were largely related to myelosuppression and most grade 3/4 TEAEs were hematologic
 - Grade 3/4 infections occurred in 23 (25.6%) patients in Cohort B and 29 (27.1%) patients in Cohort D
 - The incidence of grade 3/4 non-hematologic TEAEs was < 3%

Discontinuation due to TEAE was 6.7 (cohort B) and 4.7 (cohort D)

AE, adverse event; DEX, dexamethasone; IBER, iberdomide; TEAE, treatment-emergent adverse event.

van de Donk N et al IMW 2023 poster P-320

	Coh	ort B	Cohort D IBER + DEX dose expansion		
	IBER	+ DEX			
TEAEs of interest, ^a n (%)	dose es	calation			
	(N = 90)		(N = 107)		
	Any grade	Grade 3/4	Any grade	Grade 3/4	
Any event	89 (98.9)	75 (83.3)	107 (100)	88 (82.2)	
Hematologic TEAEs					
Neutropenia	43 (47.8)	38 (42.2)	64 (59.8)	48 (44.9)	
Febrile neutropenia	3 (3.3)	3 (3.3)	5 (4.7)	5 (4.7)	
Anemia	35 (38.9)	24 (26.7)	44 (41.1)	30 (28.0)	
Thrombocytopenia	18 (20.0)	13 (14.4)	38 (35.5)	23 (21.5)	
Leukopenia	14 (15.6)	12 (13.3)	30 (28.0)	22 (20.6)	
Non-hematologic TEAEs					
Fatigue	33 (36.7)	2 (2.2)	25 (23.4)	3 (2.8)	
Insomnia	29 (32.2)	1 (1.1)	15 (14.0)	1 (0.9)	
Diarrhea	21 (23.3)	1 (1.1)	25 (23.4)	1 (0.9)	
Rash	17 (18.9) ^b	0	21 (19.6) ^c	3 (2.8) ^c	
Venous thromboembolism	4 (4.4)	2 (2.2)	5 (4.7)	2 (1.9)	
Infections	56 (62.2)	23 (25.6)	62 (57.9)	29 (27.1)	
Pneumonia	14 (15.6) ^d	12 (13.3) ^d	13 (12.1) ^e	9 (8.4) ^e	
Respiratory tract infection	21 (23.3) ^f	5 (5.5) ^f	15 (14.0) ^g	4 (3.7) ^g	

CC -220 MM- 001 trial

Authors' conclusions

- The all-oral regimen of IBER + DEX showed a tolerable safety profile in patients with RRMM
- TEAEs were manageable with dose modifications, dose interruptions, and G-CSF
 - Few patients discontinued IBER due to TEAEs
- AEs were largely related to myelosuppression
- Higher IBER PK exposure was associated with a higher probability and earlier occurrence of grade ≥ 3 neutropenia and grade ≥ 3 thrombocytopenia
- These safety data support further development of IBER in combination with other agents in patients with RRMM

AE, adverse event; DEX, dexamethasone; G-CSF, granulocyte colony-stimulating factor; IBER, iberdomide; MM, multiple myeloma; RR, relapsed/refractory; TEAE, treatment-emergent AE.

Emerging data suggest an interesting clinical profile for MEZI

Mezigdomide

Optimized for **rapid and maximal degradation of target proteins**, induces **tumor cell apoptosis** and responses needed **to regain control** with tolerability^{1,2}

Stimulates the immune system and maintains the potential **to treat advanced disease** in combination regimens^{1,2}

MEZI Clinical insights

- The most potent cereblon-modulating agent with rapid substrate degradation and apoptosis induction^{1,2}
- Activity in combination with PIs in DARA- and REVrefractory patients³
- Manageable safety profile with neutropenia as the most frequent TEAE¹⁻⁴
- Potential for deep tissue distribution and activity in the presence of plasmacytomas¹
- Data at ASH 2022 demonstrates the activity and safety of MEZI + DEX in heavily pretreated patients⁴
- Ongoing research program evaluating MEZI-based regimens in RRMM^{5,6}

DARA=Darzalex (daratumumab); EMP=extramedullary plasmacytoma; LEN=REVLIMID (lenalidomide); MEZI=mezigdomide; POM=POMALYST/IMNOVID (pomalidomide); TEAE=treatment emergent adverse events.

References: 1. Richardson PG et al. Presented at the American Society of Clinical Oncology (ASCO) Annual Meeting; May 29-31, 2020; Virtual Program. 2. Amatangelo M et al. Presented at the IMS Annual Meeting; August 25-27, 2022; Los Angeles, CA, USA. Abstract P-230. 3. Richardson PG et al. Presented at the IMS Annual Meeting; August 25-27, 2022; Los Angeles, CA, USA. Abstract OAB-053. 4. Richardson PG et al. Presented at the IMS Annual Meeting; August 25-27, 2022; Los Angeles, CA, USA. Abstract OAB-053. 4. Richardson PG et al. Presented at 64th American Society of Hematology (ASH) Annual Meeting; December 10-13, 2022. New Orleans, LA. 5. ClinicalTrials.gov identifier: NCT0555976. Updated June 13, 2023. Accessed June 21, 2023. https://www.clinicaltrials.gov/study/NCT05552976. Updated June 18, 2023. Accessed June 21, 2023. https://www.clinicaltrials.gov/study/NCT05552976.

CC-92480-MM-002 study design and objective

- Phase 1/2 study evaluating MEZI with different treatment combinations in MM^{1,2}
- Objective: to report updated results from the MEZI + BORT + DEX (MeziVd) and MEZI + CFZ + DEX (MeziKd) doseescalation cohorts, and the MeziVd dose-expansion cohort

^a0.3, 0.6, or 1.0 mg; ^b0.6 and 1.0 mg.
 DARA, daratumumab; ELO, elotuzumab; ISA, isatuximab.
 1. ClinicalTrials.gov: NCT03989414; 2.EudraCT number: 2018-004767-31.

CC-92480-MM-002 Cohorts A, C, and D

Key eligibility criteria

- Documented diagnosis of MM and measurable disease
- Documented disease progression during or after the last antimyeloma therapy
- MR or better to ≥ 1 prior regimen
- Prior regimens:
 - 2–4 for Cohorts A and C
 - 1-3 for Cohort D
 - LEN for ≥ 2 consecutive cycles

	reatments
Cohort A	MEZI (oral): 0.3, 0.6, or 1.0 mg on D1–14 BORT (SC): 1.3 mg/m ² on D1, 4, 8, 11 (C1–8); on D1, 8 (C≥9) DEX (oral): 20 mg ^a on D1, 2, 4, 5, 8, 9, 11, 12 (C1– 8); on D1, 2, 8, 9 (C≥9)
	21-day cycles
Cohort D	MEZI (oral): <u>0.6 or 1.0 mg</u> on D1–14 BORT (SC): 1.3 mg/m ² on D1, 4, 8, 11 (C1–8); on D1, 8 (C≥9) DEX (oral): 20 mg ^a on D1, 2, 4, 5, 8, 9, 11, 12 (C1– 8): on D1, 2, 8, 9 (C≥9)

MeziVd

MeziKd

Tresteres

 MEZI (oral): 0.3, 0.6, or 1.0 mg on D1–21

 CFZ (IV): 20 mg/m² on C1D1; 56 mg/m² on D8, 15

 (C1), D1, 8, 15 (C2–12), D1, 15 (C≥13)

 DEX (oral/IV): 40 mg^b on D1, 8, 15, 22

28-day cycles

Primary endpoints

 Recommended dose and regimen (Cohorts A and C)

- Safety
- Preliminary efficacy as ORR

^a10 mg if > 75 years of age; ^b20 mg if > 75 years of age. C, cycle; D, day; IV, intravenous; LEN, lenalidomide; MR, minimal response; ORR, overall response rate; SC, subcutaneous.

CC-92480-MM-002 Cohorts A, C, and D

Baseline characteristics

Characteristic ^a	Cohort A MeziVd (N = 28)	Cohort D MeziVd (N = 49)	Cohort C MeziKd (N = 27)
Age, median (range), years	65.5 (46–86)	64.0 (43–83)	68.0 (41-76)
Sex, n (%)			
Female	16 (57.1)	16 (32.7)	18 (66.7)
Time since initial diagnosis, median (range), years	4.8 (1.9-17.1)	4.4 (0.9-20.5)	5.4 (0.7-15.7)
ECOG PS, n (%)			
0	11 (39.3)	22 (44.9)	10 (37.0)
1	15 (53.6)	25 (51.0)	15 (55.6)
2	2 (7.1)	2 (4.1)	2 (7.4)
ISS stage at study entry, n (%)			
I	20 (71.4)	34 (69.4)	21 (77.8)
Ш	6 (21.4)	9 (18.4)	3 (11.1)
- 111	2 (7.1)	6 (12.2)	3 (11.1)
Presence of plasmacytomas, ^b n (%)	5 (17.9)	5 (10.2)	3 (11.1)
High-risk cytogenetics, ^c n (%)	12 (42.9) ^d	27 (55.1) ^e	16 (59.3) ^f

^aData cutoff: July 6, 2023; ^bIncluding extramedullary soft tissue-only disease as well as soft tissue bone-related plasmacytomas; ^cDefined as the presence of any abnormality for del(17p), and/or translocation t(4,14), and/or translocation t(1,14,16), and/or an plification 1q21; ^d11/28 patients were missing or not evaluable; ^e12/49 patients were missing or not evaluable; ^e12/49 patients were missing or not evaluable; ^f9/27 patients were missing or not evaluable; ^e12/49 patients were missing or not evaluable; ^f9/27 patients were missing or not evaluable; ^e12/49 patients were missing or not evaluable; ^f9/27 patients were missing or not evaluable; ^e12/49 patients were missing or not evaluable; ^f9/27 patients were missing or not evaluable; ^e12/49 patients were missing or not evaluable; ^f9/27 patients were miss

ECOG PS, Eastern Cooperative Oncology Group performance status; ISS, International Staging System.

CC-92480-MM-002 Cohorts A, C, and D

Prior therapies and refractory status

Treatment characteristic ^a	Cohort A MeziVd (N = 28)	Cohort D MeziVd (N = 49)	Cohort C MeziKd (N = 27)
Prior therapies, median (range), n	3 (2-4)	1 (1-3)	2 (2-4)
Stem cell transplantation, n (%)	6 (21.4)	14 (28.6)	5 (18.5)
PI, n (%)	27 (96.4)	44 (89.8)	27 (100)
IMiD [®] agent, n (%)	28 (100)	49 (100)	27 (100)
Anti-CD38 mAb, n (%)	14 (50.0)	19 (38.8)	22 (81.5)
IMiD agent refractory, n (%)	24 (85.7)	31 (63.3) ^b	24 (88.9) ^c
LEN refractory, n (%)	23 (82.1)	31 (63.3)	21 (77.8)
POM refractory, n (%)	13 (46.4)	0	12 (44.4)
PI refractory, n (%)	14 (50.0)	8 (16.4)	14 (51.9)
IXA refractory, n (%)	6 (21.4)	2 (4.1)	2 (7.4)
BORT refractory, n (%)	4 (14.3)	1 (2.0)	13 (48.1)
CFZ refractory, n (%)	7 (25.0)	5 (10.2)	0
Anti-CD38 mAb refractory, n (%)	14 (50.0)	17 (34.7)	20 (74.1)
Triple-class refractory, ^d n (%)	9 (32.1)	1 (2.0)	10 (37.0)

Most patients had been exposed to a PI and were IMiD-agent refractory

^aData cutoff: July 6, 2023; ^b1/31 patients was refractory to thalidomide; ^c1/24

patients was refractory to thalidomide; ^dDefined as refractory to \geq 1 IMiD agent, 1

PI, and 1 anti-CD38 mAb.

IMiD, immunomodulatory drug; IXA, ixazomib; POM, pomalidomide.

Treatment exposure

Patient disposition, ^a n (%)	Cohort A MeziVd (N = 28)	Cohort D MeziVd (N = 49)	Cohort C MeziKd (N = 27)
Ongoing	3 (10.7)	16 (32.7)	8 (29.6)
Discontinued	25 (89.3)	33 (67.3)	19 (70.4)
PD	18 (64.3)	21 (42.9)	10 (37.0)
AE	2 (7.1) ^b	7 (14.3) ^c	4 (14.8) ^d
Physician decision	2 (7.1)	0	0
Withdrawal	1 (3.6)	2 (4.1)	2 (7.4)
Death	0	2 (4.1)	1 (3.7)
Other	2 (7.1) ^e	1 (2.0) ^f	2 (7.4) ^g

Few patients discontinued due to AEs

^aData cutoff: July 6, 2023; ^b1 malignant neoplasm progression and 1 dysgeusia; ^c1 Guillain-Barre syndrome, 1 *Pneumocystis jirovecii* pneumonia, 1 orthostatic hypotension, 1 dyspnea, 1 decreased appetite, 1 neutropenia, and 1 neuromyelitis optica spectrum disorder; ^d1 COVID-19 pneumonia, 1 COVID-19, 1 diarrhea, and 1 fatigue; ^e1 patient came off treatment due to PD based upon serum free light chains and 1 patient did not want to continue therapy; ^fPatient's decision; ^g1 patient did not want to continue therapy due to ongoing abdominal issues/weight loss as well as social circumstances, and 1 patient came off treatment due to unknown reasons (the reason for discontinuation was changed to PD after the data cut-off).

AE, adverse event; COVID-19, coronavirus disease 2019; PD, progressive disease; RDI, relative dose intensity.

Response rates: dose-escalation Cohort A and dose-expansion Cohort D (MeziVd)

^aORR (PR or better); ^bData cutoff: July 6, 2023.

CI, confidence interval; CR, complete response; DOR, duration of response; FUT, follow-up time; NR, not reached; PR, partial response; sCR, stringent CR; SD, stable disease; TTFR, time to first response; VGPR, very good PR.

Response rates: dose-escalation Cohort C (MeziKd)

MeziKd showed efficacy at all dose levels tested

Response rates by refractoriness to prior therapies

MEZI was active in patients refractory to prior therapies

^aPR or better; ^bData cutoff: March 20, 2023; ^cData cutoff: July 6, 2023.

Conclusions

- With longer follow-up, MEZI in combination with either Vd or Kd continued to show promising efficacy at all dose levels tested, consistent with previous reports^{1,2}
 - Responses were deep and durable, with many patients remaining on treatment after 1 year
 - MEZI was active in patients refractory to POM and both LEN and anti-CD38 mAbs
 - MEZI was pharmacodynamically active with BORT and CFZ at all dose levels tested
- MEZI was well tolerated with a manageable safety profile
 - The most common grade 3/4 TEAE was neutropenia, which was managed with dose interruptions and G-CSF
 - Non-hematologic grade 3/4 TEAEs were uncommon
 - Discontinuation due to TEAEs was low
- Clinical activity was observed in all cohorts and dose optimization of MEZI plus DEX in combination with PIs continues to be explored
 - These data support further investigation of MEZI in the phase 3 studies SUCCESSOR-1 (MeziVd vs POM plus Vd) and SUCCESSOR-2 (MeziKd vs Kd)

G-CSF, granulocyte-colony stimulating factor; Kd, CFZ + DEX; Vd, BORT + DEX.

1. Richardson PG, et al. Blood 2021;138(suppl 1). Abstract 2731; 2. Richardson PG, et al. Clin Lymphoma Myeloma Leuk 2022;22(suppl):S33.

CC-92480-MM-001 trial

Study design and Objective

To report, for the first time, the safety and efficacy results from the dose-escalation cohort of the CC-92480-MM-001 trial evaluating MEZI monotherapy in patients with RRMM

 a Oral MEZI given at escalating doses; b Oral DEX given at a dose of 40 mg (20 mg in patients \geq 75 years of age); c De-escalation to 0.4 mg was performed for dose exploration and was not in fulfillment of any DLT criteria.

DL, dose level; LEN, lenalidomide; mAb, monoclonal antibody; MTD, maximum tolerated dose; PD, progressive disease; PI, proteasome inhibitor; PK, pharmacokinetics; POM, pomalidomide; QD, daily; RP2D, recommended phase 2 dose.

CC-92480-MM-001 trial

30-31 gennaio 2024 BOLOGNA, Royal Hotel Carlton

Patients

- At data cutoff (July 6, 2023), 17 patients had received MEZI
- prior therapy and refractory status are shown in Table
 - All patients were exposed to IMiD agents, anti-CD38 mAbs, and PIs
- Median follow-up was 3.7 (0.4-mg dose) and 5.8 (0.6-mg dose) months, and median treatment duration was 13.1 (0.4-mg dose) and 19.0 (0.6-mg dose) weeks
- Discontinuation was mainly due to PD, reported in 4/5 (80.0%) patients (0.4-mg dose) and 7/12 (58.3%) patients (0.6-mg dose), and 2 (11.8%) patients continued on treatment at the 0.6-mg dose
- Three (25.0%) patients at the 0.6-mg dose required MEZI dose reductions

Prior therapies and refractory status ^a	MEZI 0.4 mg (N = 5)	MEZI 0.6 mg (N = 12)
Prior antimyeloma therapies, median (range),		
n	3 (3–5)	6.5 (4–10)
ASCT, n (%)	2 (40.0)	10 (83.3)
T-cell therapy, n (%)	0	7 (58.3)
TCE	0	7 (58.3)
CAR T	0	1 (8.3)
Anti-BCMA	0	3 (25.0)
Triple-class exposed, ^b n (%)	5 (100)	12 (100)
Triple-class refractory, ^b n (%)	5 (100)	9 (75.0)
IMiD agent refractory, ^c n (%)	5 (100)	10 (83.3)
POM	4 (80.0)	10 (83.3)
LEN	5 (100)	7 (58.3)
PI refractory, n (%)	5 (100)	10 (83.3)
CFZ	5 (100)	8 (66.7)
BORT	2 (40.0)	8 (66.7)
Anti-CD38 mAb refractory, n (%)	5 (100)	12 (100)
DARA	5 (100)	12 (100)
ISA	0	1 (8.3)
BCMA therapy refractory, n (%)	0	3 (25.0)

IMiD, immunomodulatory drug; mAb, monoclonal antibody; MEZI, mezigdomide; PD, progressive disease; PI, proteasome inhibitor.

30-31 gennaio 2024 BOLOGNA, Royal Hotel Carlton

CC-92480-MM-001 trial

Overall response

- Response (PR or better) was reported in 6 of 12 patients (50.0%) at the 0.6-mg dose, including 2 VGPRs and 4 PRs
- There were no responses (0/5) at the 0.4-mg dose At the 0.6-mg dose, the VGPR or better rate was 16.7%
- Patients treated with the 0.6-mg dose had durable responses
- The median duration of response was not yet mature
- The median progression-free survival was 2.8 (95% CI, 1.9-4.6) months in the 0.4-mg cohort, and 5.7 (95% CI, 2.4–not available) months in the 0.6-mg cohort

^aORR (PR or better); ^bData cutoff: July 6, 2023.

CR, complete response; MR, minimal response; NE, not evaluable; SD, stable disease.

CC-92480-MM-001 trial

Safety

- Grade 3/4 TEAEs occurred in 5/5 (100%) patients (0.4-mg dose) and 11/12 (91.7%) patients (0.6-mg dose) (The most frequent hematologic grade 3/4 TEAEs were neutropenia (80.0% at the 0.4-mg dose, 83.3% at the 0.6-mg dose), anemia (40.0% at the 0.4-mg dose, 41.7% at the 0.6-mg dose), and leukopenia (60.0% at the 0.4-mg dose, 16.7% at the 0.6-mg dose)
 - Grade 3/4 infections were reported in 1/5 (20.0%) patients (0.4-mg dose) and 2/12 (16.7%) patients (0.6-mg dose)
 - The incidence of other grade 3/4 non-hematologic TEAEs was low
- Overall, 12 (70.6%) and 3 (16.6%) patients had MEZI dose interruptions and reductions due to TEAEs, respectively
- No patient discontinued MEZI due to TEAEs
- Of the 15 evaluable patients, 1 had a DLT in the 0.6-mg cohort (due to neutropenia lasting more than 5 days)

DLT, dose-limiting toxicity; MEZI, mezigdomide; TEAE, treatment-emergent adverse event.

CC-92480-MM-001 trial

Authors' conclusions

- In patients with heavily pretreated RRMM, MEZI monotherapy at the 0.6-mg dose demonstrated an ORR of 50.0%, similar to that of MEZI + DEX (40.6%)
- In a non-randomized, heterogeneous population, MEZI was pharmacodynamically active with no new safety signals
- With dose modifications, MEZI was tolerable
 - Consistent with the profile of a CRBN-modulating drug, neutropenia was common, but manageable
 - The occurrence of grade 3/4 non-hematologic TEAEs was relatively low
- To date, the MTD/RP2D has not been reached; the 0.6-mg MEZI dose was safe and higher doses could be possibly explored in the future
- MEZI preliminary safety, efficacy, and pharmacodynamic profile support further development as a corticosteroid-sparing approach in MM

DEX, dexamethasone; MEZI, mezigdomide; MM, multiple myeloma; MTD, maximum tolerated dose; ORR, overall response rate; RP2D, recommended phase 2 dose; RR, relapsed/refractory; TEAE, treatment-emergent adverse event.

Take home

- Novel CELMoD agents demonstrate efficacy in IMID agent-resistant relapsed/refractory Myeloma
- Efficacy is increased in combination study to date
- Ongoing Studies will help define the optimal future role of IBER and MEZI in treatment of Myeloma patients

GRAZIE PER L'ATTENZIONE